Una mirada a los péptidos y su potencial aplicación en acuicultura de peces

Autores/as

Autores/as: Santana Sepúlveda, Paula; Guzmán Quimbayo, Fanny; Mercado Vianco, Luis; Jara Gutiérrez, Carlos; Álvarez Álvarez, Claudio; Alvarado Almonacid, Nancy

Palabras clave:

Péptidos, Antimicrobianos, Piscifactoría, Salmones, Salmonicultura

Sinopsis

Mejorar las respuestas fisiológicas de peces es una constante necesidad para incrementar la productividad de piscifactorías. Lo anterior requiere identificar moléculas que puedan ser utilizadas para modular o reforzar su respuesta inmunológica frente a patógenos, regular su sistema endocrino o facilitar su desarrollo reproductivo en cautiverio.

En este libro exploramos cómo los péptidos pueden ser utilizados en interesantes estrategias para mejorar el desempeño de peces bajo cultivo, así como también identificar aquellas brechas que aún deben trabajarse para su aplicación a gran escala.

Referencias

Alfred, O. & Shaahu, A. (2020). An Overview on Understanding the Basic Concept of Fish Diseases in Aquaculture. IRE

Journals, 4(6), 83-91.

Cabello, F., Godfrey, H., Ivanova, L., Shah, S., Sørum, H. & Tomova, A. (2020). Freshwater salmon aquaculture in Chile and transferable antimicrobial resistance. Environmental Microbiology, 22(2), 559-563. https://doi.org/10.1111/1462-2920.14891

FAO. (2020). El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. https://www.fao.org/documents/card/en/c/ca9229es

Flores-Kossack, C., Montero, R., Köllner, B. & Maisey, K. (2020). Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. Fish and Shellfish Immunology, 98, 52-67. https://doi.org/10.1016/j.fsi.2019.12.093

Miranda, C., Godoy, F. & Lee, M. (2018). Current Status of the Use of Antibiotics and the Antimicrobial Resistance in the Chilean Salmon Farms. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01284

Pincinato, R., Asche, F., Bleie, H., Skrudland, A. & Stormoen, M. (2021). Factors influencing production loss in salmonid

farming. Aquaculture, 532. https://doi.org/10.1016/j.aquaculture.2020.736034

Shah, S., Cabello, F., L’Abée-Lund, T., Tomova, A., Godfrey, H., Buschmann, A. & Sørum, H. (2014). Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Environmental Microbiology, 16(5), 1310-1320. https://doi.org/10.1111/1462-2920.12421

Albericio, F. (2000). Orthogonal protecting groups for Na -amino and C-terminal carboxyl functions in solid-phase synthesis.

Biopolymers - Peptide Science Section, 55(2), 123-139.

Barlos, K., Chatzi, O., Gatos, D. & Stavropoulos, G. (1991). 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and

peptide cleavage. International Journal of Peptide and Protein Research, 37(6), 513-520.

Behrendt, R., White, P. & Offer, J. (2016). Advances in Fmoc solidphase peptide synthesis. Journal of Peptide Science, 22(1), 4-27.

DOI: 10.1002/psc.2836

Chan, W. & White, P. (2000). Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Oxford University Press.

Cunningham, C. & Porter, A. (1997). Methods in Biotechnology. Vol. 3: Recombinant proteins from plants – production and isolation of

clinically useful compounds. Humana Press.

Du Vigneaud, V., Ressler, C., Swan, C., Roberts, C., Katsoyannis, P. & Gordon, S. (1953). The synthesis of an octapeptide amide with the

hormonal activity of oxytocin. Journal of the American Chemical Society, 75(19), 4879-4880. https://doi.org/10.1021/ja01115a553

Guzmán, F., Gauna, A., Luna, O., Román, T., Álvarez, C., Albericio, F. & Cárdenas, C. (2020). The tea-bag protocol for comparison of Fmoc

removal reagents in solid-phase peptide synthesis. Amino Acids, 52(8), 1201-1205. https://doi.org/10.1007/s00726-020-02883-8

Guzmán, F., Gauna, A., Román, T., Luna, O., Álvarez, C., Pareja-Barrueto, C., Mercado, L., Albericio, F. & Cárdenas, C. (2021). Tea Bags for Fmoc Solid-Phase Peptide Synthesis: An Example of Circular Economy. Molecules, 26(16). https://doi.org/10.3390/molecules26165035

Guzmán, F., Wong, G., Román, T., Cárdenas, C., Álvarez, C., Schmitt, P., Albericio, F. & Rojas, V. (2019). Identification of Antimicrobial

Peptides from the Microalgae Tetraselmis suecica (Kylin) Butcher and Bactericidal Activity Improvement. Mar Drugs, 17(8).

https://doi.org/10.3390/md17080453

Intiquilla, A., Jiménez-Aliaga, K., Guzmán, F., Álvarez, C., Zavaleta, A., Izaguirre, V. & Hernández-Ledesma, B. (2019). Novel antioxidant

peptides obtained by alcalase hydrolysis of Erythrina edulis (pajuro) protein. Journal of the Science of Food and Agriculture, 99(5), 2420-2427. https://doi.org/10.1002/jsfa.9449

Jaradat, D. (2018). Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond

formation utilized in peptide ligation. Amino Acids, 50(1), 39-68. https://doi.org/10.1007/s00726-017-2516-0

Khan, S., Ullah, M., Siddique, R., Nabi, G., Manan, S., Yousaf, M. & Hou, H. (2016). Role of Recombinant DNA Technology

to Improve Life. International Journal of Genomics, 2016. https://doi.org/10.1155/2016/2405954

Kimmerlin, T. & Seebach, D. (2005). “100 years of peptide synthesis”: ligation methods for peptide and protein synthesis with

applications to b-peptide assemblies. Journal of Peptide Research, 65(2), 229-260. https://doi.org/10.1111/j.1399-3011.2005.00214.x

Klint, J., Senff, S., Saez, N., Seshadri, R., Lau, H., Bende, N., Undheim, E., Rash, L., Mobli, M. & King, G. (2013). Production of recombinant

disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One, 8(5).

https://doi.org/10.1371/journal.pone.0063865

Kumar, A., Alhassan, M., Lopez, J., Albericio, F. & de la Torre, B. (2020). N-Butylpyrrolidinone for Solid-Phase Peptide Synthesis

is Environmentally Friendlier and Synthetically Better than DMF. ChemSusChem, 13(19), 5288-5294. https://doi.org/10.1002/

cssc.202001647

Kumar, D. & Bhalla, T. (2005). Microbial proteases in peptide synthesis: approaches and applications. Applied Microbiology

and Biotechnology, 68(6), 726-736. https://doi.org/10.1007/s00253-005-0094-7

Luna, O., Gomez, J., Cárdenas, C., Albericio, F., Marshall, S. & Guzmán, F. (2016). Deprotection Reagents in Fmoc Solid Phase Peptide

Synthesis: Moving Away from Piperidine? Molecules, 21(11). https://doi.org/10.3390/molecules21111542

Merrifield, B. (1985). Solid phase synthesis (Nobel lecture). Bioscience Reports, 5(5), 353-376. https://doi.org/10.1007/BF01116553

Merrifield, B. (1963). Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society, 85(14),

-2154. https://doi.org/10.1021/ja00897a025

Miranda, L. & Alewood, P. (1999). Accelerated chemical synthesis of peptides and small proteins. Proceedings of the National

Academy of Sciences of the United States of America, 96(4), 1181-1186. https://doi.org/10.1073/pnas.96.4.1181

Murray, C. & Baliga, R. (2013). Cell-free translation of peptides and proteins: from high throughput screening to clinical production.

Current Opinion in Chemical Biology, 17(3), 420-426. https://doi.org/10.1016/j.cbpa.2013.02.014

Nuñez, S., Cárdenas, C., Pinto, M., Valencia, P., Cataldo, P., Guzmán, F. & Almonacid, S. (2020). Bovine skin gelatin hydrolysates as potential substitutes for polyphosphates: The role of degree of hydrolysis and pH on water-holding capacity. Journal of Food Science, 85(7), 1988-1996. https://doi.org/10.1111/1750-3841.15299

Subirós-Funosas, R., Prohens, R., Barbas, R., El-Faham, A. & Albericio, F. (2009). Oxyma: an efficient additive for peptide synthesis to

replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chemistry, 15(37), 9394-9403.

https://doi.org/10.1002/chem.200900614

Walsh, G. (2005). Therapeutic insulins and their large-scale manufacture. Applied Microbiology and Biotechnology, 67(2), 151-

https://doi.org/10.1007/s00253-004-1809-x

Wright, G., Carver, A., Cottom, D., Reeves, D., Scott, A., Simons, P., Wilmut, I., Garner, I. & Colman, A. (1991). High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Nature Biotechnology, 9, 830-834. https://doi.org/10.1038/nbt0991-830

Zhang, L. & Falla, T. (2009). Cosmeceuticals and peptides. Clinics in Dermatology, 27(5), 485-494.

https://doi.org/10.1016/j.clindermatol.2009.05.013

Zompra, A., Galanis, A., Werbitzky, O. & Albericio, F. (2009). Manufacturing peptides as active pharmaceutical ingredients. Future Medicinal Chemistry, 1(2), 361-377. https://doi.org/10.4155/fmc.09.23

*Presente referencia corresponde a los primeros capítulos de la obra.

Descargas

Publicado

28-06-2022

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Detalles sobre el formato de publicación disponible: pdf

pdf

ISBN-13 (15)

978-956-6109-98-3

Detalles sobre el formato de publicación disponible: epub

epub