Una mirada a los péptidos y su potencial aplicación en acuicultura de peces
Palabras clave:
Péptidos, Antimicrobianos, Piscifactoría, Salmones, SalmoniculturaSinopsis
Mejorar las respuestas fisiológicas de peces es una constante necesidad para incrementar la productividad de piscifactorías. Lo anterior requiere identificar moléculas que puedan ser utilizadas para modular o reforzar su respuesta inmunológica frente a patógenos, regular su sistema endocrino o facilitar su desarrollo reproductivo en cautiverio.
En este libro exploramos cómo los péptidos pueden ser utilizados en interesantes estrategias para mejorar el desempeño de peces bajo cultivo, así como también identificar aquellas brechas que aún deben trabajarse para su aplicación a gran escala.
Referencias
Alfred, O. & Shaahu, A. (2020). An Overview on Understanding the Basic Concept of Fish Diseases in Aquaculture. IRE
Journals, 4(6), 83-91.
Cabello, F., Godfrey, H., Ivanova, L., Shah, S., Sørum, H. & Tomova, A. (2020). Freshwater salmon aquaculture in Chile and transferable antimicrobial resistance. Environmental Microbiology, 22(2), 559-563. https://doi.org/10.1111/1462-2920.14891
FAO. (2020). El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. https://www.fao.org/documents/card/en/c/ca9229es
Flores-Kossack, C., Montero, R., Köllner, B. & Maisey, K. (2020). Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. Fish and Shellfish Immunology, 98, 52-67. https://doi.org/10.1016/j.fsi.2019.12.093
Miranda, C., Godoy, F. & Lee, M. (2018). Current Status of the Use of Antibiotics and the Antimicrobial Resistance in the Chilean Salmon Farms. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01284
Pincinato, R., Asche, F., Bleie, H., Skrudland, A. & Stormoen, M. (2021). Factors influencing production loss in salmonid
farming. Aquaculture, 532. https://doi.org/10.1016/j.aquaculture.2020.736034
Shah, S., Cabello, F., L’Abée-Lund, T., Tomova, A., Godfrey, H., Buschmann, A. & Sørum, H. (2014). Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Environmental Microbiology, 16(5), 1310-1320. https://doi.org/10.1111/1462-2920.12421
Albericio, F. (2000). Orthogonal protecting groups for Na -amino and C-terminal carboxyl functions in solid-phase synthesis.
Biopolymers - Peptide Science Section, 55(2), 123-139.
Barlos, K., Chatzi, O., Gatos, D. & Stavropoulos, G. (1991). 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and
peptide cleavage. International Journal of Peptide and Protein Research, 37(6), 513-520.
Behrendt, R., White, P. & Offer, J. (2016). Advances in Fmoc solidphase peptide synthesis. Journal of Peptide Science, 22(1), 4-27.
DOI: 10.1002/psc.2836
Chan, W. & White, P. (2000). Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Oxford University Press.
Cunningham, C. & Porter, A. (1997). Methods in Biotechnology. Vol. 3: Recombinant proteins from plants – production and isolation of
clinically useful compounds. Humana Press.
Du Vigneaud, V., Ressler, C., Swan, C., Roberts, C., Katsoyannis, P. & Gordon, S. (1953). The synthesis of an octapeptide amide with the
hormonal activity of oxytocin. Journal of the American Chemical Society, 75(19), 4879-4880. https://doi.org/10.1021/ja01115a553
Guzmán, F., Gauna, A., Luna, O., Román, T., Álvarez, C., Albericio, F. & Cárdenas, C. (2020). The tea-bag protocol for comparison of Fmoc
removal reagents in solid-phase peptide synthesis. Amino Acids, 52(8), 1201-1205. https://doi.org/10.1007/s00726-020-02883-8
Guzmán, F., Gauna, A., Román, T., Luna, O., Álvarez, C., Pareja-Barrueto, C., Mercado, L., Albericio, F. & Cárdenas, C. (2021). Tea Bags for Fmoc Solid-Phase Peptide Synthesis: An Example of Circular Economy. Molecules, 26(16). https://doi.org/10.3390/molecules26165035
Guzmán, F., Wong, G., Román, T., Cárdenas, C., Álvarez, C., Schmitt, P., Albericio, F. & Rojas, V. (2019). Identification of Antimicrobial
Peptides from the Microalgae Tetraselmis suecica (Kylin) Butcher and Bactericidal Activity Improvement. Mar Drugs, 17(8).
https://doi.org/10.3390/md17080453
Intiquilla, A., Jiménez-Aliaga, K., Guzmán, F., Álvarez, C., Zavaleta, A., Izaguirre, V. & Hernández-Ledesma, B. (2019). Novel antioxidant
peptides obtained by alcalase hydrolysis of Erythrina edulis (pajuro) protein. Journal of the Science of Food and Agriculture, 99(5), 2420-2427. https://doi.org/10.1002/jsfa.9449
Jaradat, D. (2018). Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond
formation utilized in peptide ligation. Amino Acids, 50(1), 39-68. https://doi.org/10.1007/s00726-017-2516-0
Khan, S., Ullah, M., Siddique, R., Nabi, G., Manan, S., Yousaf, M. & Hou, H. (2016). Role of Recombinant DNA Technology
to Improve Life. International Journal of Genomics, 2016. https://doi.org/10.1155/2016/2405954
Kimmerlin, T. & Seebach, D. (2005). “100 years of peptide synthesis”: ligation methods for peptide and protein synthesis with
applications to b-peptide assemblies. Journal of Peptide Research, 65(2), 229-260. https://doi.org/10.1111/j.1399-3011.2005.00214.x
Klint, J., Senff, S., Saez, N., Seshadri, R., Lau, H., Bende, N., Undheim, E., Rash, L., Mobli, M. & King, G. (2013). Production of recombinant
disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One, 8(5).
https://doi.org/10.1371/journal.pone.0063865
Kumar, A., Alhassan, M., Lopez, J., Albericio, F. & de la Torre, B. (2020). N-Butylpyrrolidinone for Solid-Phase Peptide Synthesis
is Environmentally Friendlier and Synthetically Better than DMF. ChemSusChem, 13(19), 5288-5294. https://doi.org/10.1002/
cssc.202001647
Kumar, D. & Bhalla, T. (2005). Microbial proteases in peptide synthesis: approaches and applications. Applied Microbiology
and Biotechnology, 68(6), 726-736. https://doi.org/10.1007/s00253-005-0094-7
Luna, O., Gomez, J., Cárdenas, C., Albericio, F., Marshall, S. & Guzmán, F. (2016). Deprotection Reagents in Fmoc Solid Phase Peptide
Synthesis: Moving Away from Piperidine? Molecules, 21(11). https://doi.org/10.3390/molecules21111542
Merrifield, B. (1985). Solid phase synthesis (Nobel lecture). Bioscience Reports, 5(5), 353-376. https://doi.org/10.1007/BF01116553
Merrifield, B. (1963). Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society, 85(14),
-2154. https://doi.org/10.1021/ja00897a025
Miranda, L. & Alewood, P. (1999). Accelerated chemical synthesis of peptides and small proteins. Proceedings of the National
Academy of Sciences of the United States of America, 96(4), 1181-1186. https://doi.org/10.1073/pnas.96.4.1181
Murray, C. & Baliga, R. (2013). Cell-free translation of peptides and proteins: from high throughput screening to clinical production.
Current Opinion in Chemical Biology, 17(3), 420-426. https://doi.org/10.1016/j.cbpa.2013.02.014
Nuñez, S., Cárdenas, C., Pinto, M., Valencia, P., Cataldo, P., Guzmán, F. & Almonacid, S. (2020). Bovine skin gelatin hydrolysates as potential substitutes for polyphosphates: The role of degree of hydrolysis and pH on water-holding capacity. Journal of Food Science, 85(7), 1988-1996. https://doi.org/10.1111/1750-3841.15299
Subirós-Funosas, R., Prohens, R., Barbas, R., El-Faham, A. & Albericio, F. (2009). Oxyma: an efficient additive for peptide synthesis to
replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chemistry, 15(37), 9394-9403.
https://doi.org/10.1002/chem.200900614
Walsh, G. (2005). Therapeutic insulins and their large-scale manufacture. Applied Microbiology and Biotechnology, 67(2), 151-
https://doi.org/10.1007/s00253-004-1809-x
Wright, G., Carver, A., Cottom, D., Reeves, D., Scott, A., Simons, P., Wilmut, I., Garner, I. & Colman, A. (1991). High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Nature Biotechnology, 9, 830-834. https://doi.org/10.1038/nbt0991-830
Zhang, L. & Falla, T. (2009). Cosmeceuticals and peptides. Clinics in Dermatology, 27(5), 485-494.
https://doi.org/10.1016/j.clindermatol.2009.05.013
Zompra, A., Galanis, A., Werbitzky, O. & Albericio, F. (2009). Manufacturing peptides as active pharmaceutical ingredients. Future Medicinal Chemistry, 1(2), 361-377. https://doi.org/10.4155/fmc.09.23
*Presente referencia corresponde a los primeros capítulos de la obra.

Publicado
Categorías
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.